
Optimization Based Motion Planning for Multi-Limbed Vertical
Climbing Robots

Xuan Lin1 Jingwen Zhang1 Junjie Shen1 Gabriel Fernandez1 Dennis W Hong1

Abstract— Motion planning trajectories for a multi-
limbed robot to climb up walls requires a unique combi-
nation of constraints on torque, contact force, and posture.
This paper focuses on motion planning for one particular
setup wherein a six-legged robot braces itself between two
vertical walls and climbs vertically with end effectors that
only use friction. Instead of motion planning with a single
nonlinear programming (NLP) solver, we decoupled the
problem into two parts with distinct physical meaning:
torso postures and contact forces. The first part can be
formulated as either a mixed-integer convex programming
(MICP) or NLP problem, while the second part is formu-
lated as a series of standard convex optimization problems.
Variants of the two wall climbing problem e.g. , obstacle
avoidance, uneven surfaces, and angled walls, help verify
the proposed method in simulation and experimentation.

I. Introduction

Vertical wall climbing robots are applicable in many
situations, such as surveillance, search and rescue,
and building maintenance. Since wheeled vehicles can
move fast on flat surfaces, wheeled robots have been
experimented with for wall climbing [1] [2]. Like many
wheeled robots, non-legged wall-climbing robots are
impeded by uneven surfaces, limiting their capabilities.
Many animals found in nature demonstrate fast and
agile climbing with their limbs. Legged animals can
climb up highly unstructured environments as well as
traverse on ground. They are also able to jump onto
and grab structures using only their hands, demon-
strating highly mobile motions that non-legged robots
cannot even attempt. Much of the research on climbing
robots started by mimicking animals [3] [4], and then
gradually the systems became more complex. The most
recent advancement is [5] which presented a 35 kg
robot with 4, 7-degree-of-freedom limbs, climbing on
smooth surfaces with a gecko type gripper and rough
surfaces with micro-spine gripper.

When generating climbing motions, many re-
searchers in the field resort to templates [6] [7]. Tem-
plates are used to study the dynamics of climbing.
Its implementation is currently limited to light, low
degree-of-freedom robots. The climbing motion for
more complex, high degree-of-freedom robots is still
quasi-static [5]. When climbing an environment not
seen before, the robot needs to carefully plan its steps

1Robotics and Mechanisms Laboratory (RoMeLa), Department
of Mechanical and Aerospace Engineering, University of
California Los Angeles, CA 90095. maynight@ucla.edu,

zhjwzhang@g.ucla.edu, junjieshen@ucla.edu,

gabriel808@g.ucla.edu, dennishong@ucla.edu

Fig. 1: A series of trajectories generated by the MICP motion
planner for the six-legged robot to climb up between two
walls while avoiding an obstacle. Red and blue dots show
the planned toe positions, and the hexagons show the body
orientation. Three postures are detailed on the right with
planned contact forces (blue arrows) along with the nominal
friction cones (red).

and torque based on the environment to find a trajec-
tory to reach its objective. Thus, wall climbing becomes
a motion planning problem. This line of work was
started by [8], which presented an algorithm based
on a more classical graph search method. In this pa-
per, we present another approach which utilizes op-
timization methods for multi-limbed climbing robots
to plan trajectories when climbing. Optimization based
methods, such as mixed-integer convex programming
(MICP) and nonlinear programming (NLP), have been
implemented in many situations to plan motions for
walking robots [9] [10] [11] [12]. This paper extends
these methods to wall-climbing applications.

One difference between planning for walking versus
for climbing is that for walking, the planner focuses
on generating a series of poses that satisfy various
constraints. However, for climbing, posture constraints
alone is insufficient. Each end effector needs to preload
before making contact with a surface in order to gener-
ate enough adhesive forces. For example, geckos needs
to preload their foot with shear forces to generate
normal forces [13]. Thus, for each different posture
the robot needs to reason: how much preload needs
to be exerted? Is the adhesive force sufficient to hold
the robots weight without slipping? Are the actuators
strong enough to keep the pose on the wall and to
preload the end effectors? To answer these questions,

additional constraints need to be reasoned, leading to
a different algorithm from walking.

The algorithm presented in this paper is experimen-
tally verified by enabling a position controlled hexapod
robot to climb between two walls with frictional con-
tacts, i.e. two-wall-climbing problem. This problem was
first introduced by our previous paper [14]. Although
the robot doesn’t use any adhesive-type grippers, it
“squeezes” itself between two walls, like loading a
spring, to generate a large normal force. Therefore, the
“preloading” described above corresponds to squeezing
the body. There are a few key characteristics for this
sort of climbing. First, the problem is quasi-static but
statically indeterminate. Thus, a different model based
on stiffness matrices is required to solve the contact
force, as presented in [14]. Second, since this robot
utilizes no more than pure friction to climb, significant
amounts of pushing force against the wall is required
by the limbs. This constantly drives the actuators close
to its maximum output torque. Our algorithm makes a
trade-off between the pushing force and motor torque.
If a limb pushes too hard into the wall, it may over-
torque itself, while if it doesn’t push hard enough, the
friction may not be sufficient to hold the robot’s weight.
This inspired a safety factor based design method, as
presented in the next section. The results of this paper
may be directly transcribed to certain kinds of human-
like climbing, e.g. , tree-climbing, climbing down a
well, etc.

This paper makes the following contributions:
1) A two-step optimization based motion planning

algorithm for multi-limbed vertical climbing robots:
a) An MICP formulation for climbing posture

planning.
b) A convex optimization formulation for contact

force planning when climbing with the pro-
posed safety factor.

2) Demonstration of the algorithm on hardware, i.e. ,
a hexapod robot that climbs between two irregular
walls with frictional contacts.

II. Problem Formulation

This section describes the robotic platform used for
climbing, the model of the platform, and a complete
formulation of the optimization problem.

A. Robotic Platform

The robotic platform used in this paper is a hexapod
robot whose each limb has 3 degrees of freedom and

TABLE I: Robot Configuration
Parameter Value

Degree of Freedom for Each Limb 3
Limb Coxa Length 57 [mm]

Limb Femur Length 195 [mm]
Limb Tibia Length 375 [mm]

Weight 10.3 [kg]
Max Torque 26 [Nm]

consists of a coxa, an upper femur, and a lower tibia
assembly. Dynamixel MX-106 motors have been used in
pairs for actuation. The robot carries its own battery,
computer, and IMU. End effectors are covered by anti-
slip tape to enhance friction. The parameters of the
robot are summarized in Table I. For more details of
the robot design see [14].

B. Robot Model

One difficulty to model multi-limbed vertical climb-
ing robots with position controlled joints is the reaction
forces are statically indeterminate [15] [16], i.e. they can-
not be completely determined by the static equilibrium
equations when the robot makes more than 3 contact
points on the environment. To calculate the contact
force completely, one needs to consider the deformation
of the robotic system. This is especially true for two-
wall-climbing robots, since the normal reaction forces
(fx in Fig. 2) are mainly statically indeterminate. This
problem has been mostly ignored in previous literature
but studied in our last paper [14], using Virtual Joint
Method (VJM) to model limb compliance and summa-
rize into a whole body stiffness matrix. The results are
presented below. For detailed derivations see [14].

Using the VJM method, the stiffness matrix for a L-
degree-of-freedom limb is given by:

K = (Jk−1JT)−1 (1)

where:
k = diag(ki), i = 1, . . . ,L (2)

is a diagonal matrix composed of the spring coefficients
of the P-controlled servos. J is a 3×L Jacobian matrix.

When the robot with N limbs is bracing between two
walls, its center of mass has a small deflection, sag-
down, denoted by δCOM = [δdCOM ,δθCOM]T . The wall
squeezes the robot, imposing a deflection denoted by
δi wall . The torso’s center of mass deflection can be
related by the wall imposed deflections and external
load [Ftot ,Mtot]

T (in this case only gravity) through:

AδCOM =
[
Ftot
Mtot

]
+

N∑
i=1

[
Ki

PiKi

]
δi wall (3)

where:

A =
N∑
i=1

[
Ki KiPTi

PiKi PiKiPTi

]
(4)

Pi =

 0 −zi yi
zi 0 −xi
−yi xi 0

 (5)

is the anti-symmetric matrix from each toe position.
And the reacting force on each toe is given by:

f
i
= Ki(δi wall − [I PTi]δCOM), i = 1, . . . ,N (6)

Fig. 2: Deflection of hexapod bracing between walls

C. Safety Factor for Climbing

Another difference in wall climbing from walking is
that wall climbing is a high-risk task. Falling down
from a climb is likely to not only damage the robot
and its environment but also injure people. When in a
non-controlled environment, several uncertainties may
cause climbing to fail unexpectedly. For instance, the
friction coefficient can never be measured precisely,
or there may be unexpected external load e.g. , wind.
In our analysis wall-climbing tasks are typically static
postures since the process happens slowly. However,
there still exist velocities which may cause the end
effector to disengage or over-torque. For this reason the
authors propose the notion of safety factors for wall-
climbing motions. In order to motion plan, it not only
needs to satisfy the nominal constraint but also needs
to satisfy the safety factor constraint.

Similar to finite element analysis, the safety factor is
generated by analyzing each posture of the motion and
calculating the ratio of the current index over the crit-
ical failure index. In this paper, we investigate a robot
climbing between two walls with frictional contact, and
the two failure modes are insufficient friction (slip)
and motor over-torque. Therefore, there are two safety
factors to consider. Imagine being able to gradually
reduce µ from the nominal value to the critical value µc,
when the robot is about to slip. This provides us with a
notion of the safety factor with respect to the coefficient
of friction, Sµ, defined in equation (7). Similarly, if
we imagine lowering the motor torque limit τmax from
its nominal value to a critical value τc, which is right
before the motor over-torques. We can define another
safety factor with respect to the motor’s max torque,
Sτ , defined by equation (8).

Sµ =µ/µc (7)

Sτ = τmax/τc (8)
These notions are first introduced in our previous

paper [14], where it can be retrieved graphically from
feasibility region analysis. In this paper, we formulate a
convex optimization problem to plan for the amount of
pushing forces that satisfy the safety factor constraints

for each planned robot pose.

D. Complete Formulation of the Planning Problem

In Fig. 3, we present here the complete mathematical
formulation of motion planning problem for M-rounds
climbing between walls with friction, where part of the
decision variables, Γp, are

Γp = {p
i
[j], p

COM
[j], Θb[j] | i = 1, . . . ,N, j = 1, . . . ,M} (9)

and the other part of decision variables, Γf , are

Γf = { δCOM [j], f
i
[j], δi wall[j], Ki[j]

| i = 1, . . . ,N, j = 1, . . . ,M }
(10)

for each round j, it plans body’s center of mass (COM)
position p

COM
[j], body orientation Θb[j], body deflec-

tion δCOM [j] and the ith limb’s toe positions p
i
[j], the

limb stiffness matrices Ki[j], the contact forces f
i
[j],

and limb deflections δi wall[j], where i is the limb index.
Constraint A and B limit the range of travel be-

tween rounds. In constraint C, we approximate the
limb workspace by a ball. v is the vector from robot
body’s COM to the first joint of the limb. Constraint
D ensures the toe lies on a feasible contact region on
the wall. In this paper, we assume perfect knowledge
of the wall geometry, i.e. its mathematical expression
is available to the planner. Constraint E represents
inverse kinematics. Constraint F is equation (1), the
limb stiffness matrix based on VJM. Constraint G is
equation (3) (4) (5), the whole body stiffness model.
Constraint H is equation (6) which relates limb contact
force with its deflection. Constraint H, I, J, and K ensure
the safety factor constraint in Section II-C is satisfied.

Given the results from [10], the complete problem
may be solvable with a single NLP solver. Instead
of doing that, we chose to separate the problem into
two parts that solve an MICP/NLP problem first and
then solve a series of standard convex optimization
problems, as demonstrated in the next section.

III. Motion Planning Algorithm

In this section, we describe how we solve the op-
timization problem in the last section. Several papers
e.g. , [10], have demonstrated the power of NLP solvers
being able to solve various nonlinear motion planning
problems. However, NLP solvers can easily get trapped
by local minima if the problem is complicated. We
noticed that in the optimization problem shown in Fig.
3, constraint F can be numerically hard for optimization
solvers, especially due to potential singularity issues.
Therefore, we chose to naturally decouple the problem
into two sections at constraint F, as indicated on the left
of Fig. 3. The first section is composed of constraint A,
B, C, D. This is similar to a standard walking motion
planning problem and can be solved by an MICP or

Fig. 3: Complete optimization formulation of the motion planning problem

NLP solver given the vast existing literature. The sec-
ond section including constraint G, H, I, J, K. Given all
toe positions and body posture, this part is a standard
force distribution problem [15], and can be formulated
into a standard convex optimization problem that can
be easily solved. In this setup, the constraint F along
with constraint E are evaluated algebraically after solv-
ing the first section of the problem and are not fed into
any optimization solver. By doing so, we sacrifice some
optimality, which can be seen in the following form:

minimize
Γp Γf

f (Γp,Γf)

subject to h1(Γp)≤ 0

h2(Γp,Γf)≤ 0

The constraint h1 ≤ 0 denotes the part that is to
be solved in the first part of the optimization prob-
lem while h2 ≤ 0 in the second part of the problem.
Compared to an NLP solver that takes care of both
sets of constraints simultaneously, in our 2-step setup
constraint h1 ≤ 0 is solved independent of h2 ≤ 0. This
means an optimal solution to h1 ≤ 0 may render h2 ≤ 0
non-optimal. However, we choose to solve this problem
in such way since it has several advantages:

1) Interpretability The two problems have clear and
distinct physical interpretations. The first part fo-
cuses on solving a series of postures, while the
second part optimizes for how much force the
robot needs to exert on the wall. If at one round
the solver fails, it is clear why the planner fails,

and part of the feasible solutions may still be used.
Whereas for an NLP solver, if it returns infeasible,
it tends to return results that can’t be utilized and
with no interpretable information.

2) Adaptability The first part of the problem is iden-
tical to the motion planning problem for legged
walking. Thus, it easily connects to the vast liter-
ature of walking robot motion planning. Only the
second part depends on end effectors for climb-
ing, which can be easily reformulated if the end-
effector is swapped.

3) Speed Decoupling the problem into two parts
turns a bulk part of the problem into convex opti-
mization problems, which can be solved efficiently.
This can be justified by Table II.

In the next two sections, we introduce detailed for-
mulations for each part of the problem.

A. Optimization for Climbing Posture

Given a goal configuration during wall climbing, a
pre-defined number of postures M to reach it should
be computed under the constraints of step size, kine-
matics, and toe contact points within feasible contact
regions. To simplify the task of assigning toe contact
points, we divided feasible contact regions into sev-
eral pre-computed convex constraints represented by
Arpi ≤br with perfect knowledge of structured wall
geometry, where r is the index of feasible contact
region. The IRIS algorithm [9] used for typical walking
robot motion planning problem, is also able to compute

these regions with perception. The entire optimization
problem for climbing posture is formulated as follows:

minimize
Γp , H

(q[M]−q
g
)TWg (q[M]−q

g
) +

M−1∑
j=1

(JCOM + JROT + JS)

subject to for j = 1, . . . ,M,
∆p

min
≤ ‖p

COM
[j]−p

COM
[j−1]‖2 ≤∆p

max

∆Pmin ≤ ‖pi[j]−p
i
[j−1]‖2 ≤∆Pmax

∆Θmin ≤Θb[j]−Θb[j−1]≤∆Θmax

‖p
i
[j]−p

COM
[j]−Rv‖2 ≤∆FK

Hr,i[j] ⇒ Arpi ≤br
R∑
r=1

Hr,i[j] = 1 Hr,i ∈ 0,1

where ∆p
min

, ∆p
max

, ∆Pmin, ∆Pmax, ∆Θmin, ∆Θmax ∈
R

3 are bounds for the toe, body’s COM and orientation
step sizes. ∆FK ∈R is the radius of the limb workspace
ball. For each round, H ∈ {0,1}R×6 is taking on integer
values to assign toes to feasible contact regions where
R is the number of feasible contact regions. The con-
ditional constraint about Hr,i is represented using a
standard big-M formulation.

In terms of cost function, the first term is introducing
the distance of the last round from goal configuration
where q[M] = [p

1
[M], . . . , p

6
[M]] while q

g
is the goal

configuration. The shifting amounts JCOM , JROT and JS
of body’s COM, orientation and toe positions are added
to avoid turning or climbing too far in one single step,
as the second term of cost function:

JCOM =∆pT
COM

WCOM∆p
COM

JS =
6∑
i=1

∆pT
i

Ws∆p
i

JROT =∆ΘT
b WROT∆Θb

where WCOM , Ws, WROT and previous Wg are weights
used to tune the optimizer. Except rotation matrix R
computed from Θb[j], which has a nonlinear constraint,
other parts forms an MICP, since they are either linear
or quadratic (convex). To address the nonlinearity, lin-
ear approximation of R for Θb[j] = [α,β,γ] is used as
follows:

R(Θb[j]) =

 1 −γ β
γ 1 −α
−β α 1

 (11)

This approximation is valid for applications in-
volving small rotations which is reasonable for wall-
climbing applications that do not require large rota-
tions. The error is under 3% while angles are smaller
than 10◦ using the Frobenius norm of a matrix to
compare the similarity between linearly-approximated
and exact rotation matrix.

When large changes in the body orientation are
expected, linearization of the rotation matrix becomes
invalid. In this case, NLP can be used. We formulated
our NLP according to [10] without considering the
dynamic model. Moreover, NLP can easily handle non-
convex terrains, e.g. , round tubes, which extends the
application of our work.

B. Optimization for Pushing Force

After the posture planner is finished, the inverse
kinematics, constraint E, and the stiffness matrix, con-
straint F, may be evaluated directly. Since those con-
straints are complicated and may have numerical sta-
bility issues due to the inverse of the matrix, we avoid
directly placing it in a gradient based solver. The
second part of algorithm tackles the problem of how
much force each limb needs to exert on the wall. We use
a pre-defined gait to go from one planned posture to
the next one. The robot lifts one leg and puts it on the
wall, pushes the body upwards, then lifts another leg,
and repeats. We pick 12 critical instants between two
postures for the force planner to investigate: 6 instants
after the robot lifts one leg and 6 instants after the
robot pushes its body up. The planner is formulated
into a series of standard convex optimization problem
so that it can be solved efficiently.

In Section II-C the notion of climbing motion safety
factors, Sµ and Sτ , are proposed. Since the two safety
factors are inversely related: pushing harder against the
wall will increase Sµ but decrease Sτ and vice versa.
We would like to guarantee that the safety factors are
above a value larger than 1 while having a weight to
tune the pushing force. This can be formulated as:

maximize
τi f i

Sτ +wSµ

subject to |τi | ≤ τmax/Sτ
nTi f i

≥ 0

‖f
i
− (nTi f i)ni‖2 ≤ (µ/Sµ)(nTi f i)

Sµ ≥ 1 , Sτ ≥ 1

where ni is the wall normal vector at toe i, and w is
the weight to trade-off between the two safety factors.
If we define Sτ inv = 1/Sτ , we can write the torque con-
straints into a linear form. Although the friction cone
constraint itself is convex, adding in frictional safety
factor Sµ as an optimization variable makes it non-
convex. Thus we set a constant Sµ, which shrinks the
friction cone. We put normal reaction forces nTi f i into
the objective function. By tuning the amount of normal
reaction force, the effective friction cone constraint can
be made looser or tighter. Stated formally:

minimize
δCOM f

i
δi wall τi Sτ inv

Sτ inv −w
N∑
i=1

nTi f i

subject to AδCOM =
[
Ftot
Mtot

]
+

N∑
i=1

[
Ki

PiKi

]
δi wall

f
i
= Ki(δi wall − [I PTi]δCOM)

τ i = J(θi)
T f

i

0≤ Sτ inv ≤ 1

|τi | ≤ Sτ invτmax
nTi f i

≥ 0

‖f
i
− (nTi f i)ni‖2 ≤µ(nTi f i)/Sµ

Increasing w makes the normal reaction force higher.
This loosens the friction cone bound, since the required
shear force (fz in Fig. 2) is static determinate (half
of the gravity G). Decreasing w increases Sτ , while
tightening the friction cone bound. This problem is
convex and can be solved quickly with a global optimal
guarantee. According to our trial and error hardware
testing, a lower bound of Sµ = 1.8 provides sufficient
safety against the coefficient of friction.

IV. Results

We present here three scenarios that we investigated
using our planner: climbing over steps on the walls,
climbing on the walls while avoiding obstacles, and
climbing on non-parallel walls. All results are validated
on actual hardware with properly tuned weights. In
each experiment, the walls are covered by rubber pads
and the robot toes are covered by anti-slip tape, which
gives a frictional coefficient µ around 1. A body posture
regulator based on IMU orientation feedback and PID
control is utilized for the robot body to track the
planned orientation. No other feedback is used. Due to
the stable but slow one-leg gait, the climbing speeds in
all cases are around 20 cm/min. All hardware demon-
strations can be viewed in the accompanied video
(https://www.youtube.com/watch?v=AXmrqnt3JIA&t=2s).

A. Climbing over steps on the walls
In this scenario, we let the robot climb between

two walls at a distance of 1230mm but with a 40mm
thick by 200mm high step on both walls. The wall
has multiple feasible contact surfaces, but the robot
doesn’t need to rotate for this task. Therefore, MICP
is used for planning the robot posture with the body
orientation kept flat. However, the robot does need to
adapt to the tightening of the walls’ distance between
the walls. On the steps, the robot doesn’t push as far
out to prevent over-torque. Fig. 4 shows the planned
series of postures, visualized in MATLAB, as well as
associated hardware testing scenarios.

To verify the contact force optimization results, the
setup of the robot climbing onto the steps is simulated

Fig. 4: Visualization and hardware testing of planning results
for climbing over steps on the walls.

in V-rep. Fig. 5 plots the planned with the simulated
torque curves and the critical friction coefficient µc as
defined by equation (8) with their failure boundaries
for 3 consecutive legs. The torque plotted is the max-
imal torque among three motors of one leg. When a
certain leg is lifted and in the air, the planned torque is
set to zero because lifting is achieved by the controller
instead of planner. Simulated torques for the lifted leg
is negligibly small compared to the torques when it
is on the wall so that we can tell lifting phase from
these curves. And the frictional factor is also zero
with no friction generated for the lifted leg. In Fig.
5 (a), the maximal torques of right middle (RM) and
right back (RB) legs decrease after right front (RF) leg
finished lifting phase (between the shaded interval).
With one leg in the air, other legs need to achieve
larger contact force to avoid slipping. Once the lifted
leg reaches its goal position, contact force would be re-
distributed to the 6 legs on the wall. As we can tell,
due to the complexity of contact, µc tends to exceed
the planned values, which is the reason we weighted
more on friction than torque. The non-smoothness of
the data is in part due to the toe rubbing on the wall
(caused by the physics simulator) and to the overshoot
of PID body posture controller. Some points of the
curves are above the boundaries, but the robot will not
slip or over-torque if this is not continuous.

B. Climbing on the walls while avoiding obstacles

This scenario focuses on planning the climbing di-
rection and orienting the body to avoid an obstacle be-
tween the walls, obstructing a direct path. The planned
results are visualized in Fig. 1. The robot doesn’t need
to rotate its body more than 20 degrees to complete
the task; thus, MICP with a linearized body rotation
matrix is applied. Due to the obstacle, the feasible
contact region shrinks. We manually divide each wall
into three convex regions: the upper, middle, and lower
rectangle. For each round, the toe position is optimized
within one of the three regions selected by the MICP

https://www.youtube.com/watch?v=AXmrqnt3JIA&t=2s

Fig. 5: Diagrams of the planned and V-rep (Bullet 2.83
engine) simulated results for the required motor torque τc
(maximum of 3 motors, diagram (a)) and frictional factor µc
(diagram (b)) for a single leg. The plotted data is for right
front (RF) leg, right middle (RM) leg, and right back (RB)
leg. The shaded regions are when the robot lifts a certain leg
and put it on the next position, and white regions are when
the robot pushes its body up. The plot shows failure points
(red dashed line), planned curves (blue line), and simulation
results (black line). The arrow (green) indicates the margin
due to planned safety factor. The results demonstrate a gen-
eral correspondence of planned and V-rep simulated results.

planner. Currently, the robot does not have any vision
sensor. In the future, this division can be provided by
a perception system, and the complete process will be
automated. The hardware test is shown in Fig. 6.

The MICP plans 8 rounds for this problem. Within
each round, the robot lifts each leg once and pushes up
the body for 6 times. Hence, the serial convex optimizer
plans the force 12 times for each round and 96 times in
total. Some statistics for this planner is shown in Table
II (taken on an Intel Core i7-8750H machine). Since
the bulk of the problem is convex, the total solution
speed is decently fast. We point out here that a single
NLP solver will need to deal with the same amount
of variables and constraints; thus, a similar or slower
speed is expected (refer to Table I in [10]).

C. Climbing on non-parallel walls
An interesting variation of the two-wall climbing

problem is when the walls are no longer parallel.
Ideally, we want the robot to take use of two walls at

Fig. 6: Hardware test for climbing and avoiding an obstacle.
The robot starts underneath the obstacle, as shown in the top
figure, and then it angles its body and climbs forward and up
simultaneously, as shown in the middle and bottom figures.

TABLE II: Specs for climbing and avoiding obstacle

Solver Variables Constraints T-Solve * Total T-Solve

Posture Planner
(MICP - 8 rounds) Gurobi

480
(192 continuous

144 binary)
1002 420 ms 1380 ms

Force Planner Gurobi 5856
(61 x 96)

10368
(108 x 96)

960 ms
(10 ms x 96)

* Include problem set-up time

an arbitrary angle and climb up. This section demon-
strates that our planner can be used to plan the climb-
ing motion when two flat walls are at a horizontal
angle α. We pick α = 20 degrees and implement the
planning results on the hardware, shown in Fig. 7.
Additionally, we are interested in retrieving a feasible
climbing region regarding the given horizontal angle α
and the wall coefficient of friction µ. We fix the distance
between the two middle legs, and solve this problem by
running the planner at discrete grid points for α and
µ, and label each point feasible/infeasible. Fig. 8 shows
the result when the robot is at its own weight without
payload (10.3kg). In the plot, the shaded region shows
where the robot succeeds, and the rest can be divided
into where the robot fails to provide enough force, or
fails kinematically (i.e. , some toes cannot reach the
walls). This result demonstrates that our planner can
be extended to broader two-wall cases and possibly to
climbing up poles or trees where α = 180 degrees.

V. Conclusion and Future Work

This paper addresses the motion planning problem
for a six-legged robot to braces itself between two ver-
tical walls and climbs vertically with end effectors that
only use friction. We propose a two-step optimization

Fig. 7: Visualization and hardware test of planning results
for climbing on non-parallel walls with α = 20 degrees.

Fig. 8: Feasible region for climbing on non-parallel walls.

based planner. The first step is solved as an MICP or
NLP. The second part is solved as a series of standard
convex optimization problem. We verified the motion
plan on three distinct wall profiles.

By decoupling the problem into two parts, we sacri-
fice some optimality. However, this makes the solver
easier to tune. The feasibility region (as shown in
[14]) for this problem is pretty narrow. Therefore, it is
critical to find the proper weights in the force planner.
Since our force planner is convex and interpretable, the
difficulty of tuning the weights is attenuated.

To enable the posture planner to plan according to
contact force, we can fuse constraints G through K
into the posture planner. This will hopefully enhance
the optimality of the solution returned. Additionally,
we plan to develop a perception system that maps
the wall and retrieves its geometry information. This
combined with the planner may automate the complete
climbing process and ensure the robot can track the
motion plan. Given the solving speed of our algorithm,
it could be implemented online to constantly re-plan.
We also investigated the problem of climbing spirally
up inside a tube with an MICP/NLP solver as the
posture planner, which requires the robot to rotate
its body by large angles. This will be published in
future papers. Other future works include extending
the safety factor design principle to other types of
grippers e.g. , gecko type or microspine, comparing
and combining MICP and NLP, etc. Dynamics could be
added into the planner, if dynamic climbing is desired.
However, we show that if the planner resolves more

than rigid body dynamics, e.g. , body compliance, a
good option is to decouple the algorithm according to
the physics, and resolve them hierarchically.

References

[1] P. Beardsley, R. Siegwart, M. Arigoni, M. Bischoff, S. Fuhrer,
D. Krummenacher, D. Mammolo, and R. Simpson, “Vertigo-a
wall-climbing robot including ground-wall transition,” Disney
Research, 2015.

[2] M. P. Murphy and M. Sitti, “Waalbot: An agile small-scale wall-
climbing robot utilizing dry elastomer adhesives,” IEEE/ASME
transactions on Mechatronics, vol. 12, no. 3, pp. 330–338, 2007.

[3] S. Kim, M. Spenko, S. Trujillo, B. Heyneman, D. Santos, M. R.
Cutkosky, et al., “Smooth vertical surface climbing with direc-
tional adhesion,” IEEE Transactions on robotics, vol. 24, no. 1,
pp. 65–74, 2008.

[4] M. J. Spenko, G. C. Haynes, J. Saunders, M. R. Cutkosky, A. A.
Rizzi, R. J. Full, and D. E. Koditschek, “Biologically inspired
climbing with a hexapedal robot,” Journal of field robotics,
vol. 25, no. 4-5, pp. 223–242, 2008.

[5] A. Parness, N. Abcouwer, C. Fuller, N. Wiltsie, J. Nash, and
B. Kennedy, “Lemur 3: A limbed climbing robot for extreme
terrain mobility in space,” in Robotics and Automation (ICRA),
2017 IEEE International Conference on, pp. 5467–5473, IEEE,
2017.

[6] G. A. Lynch, J. E. Clark, P.-C. Lin, and D. E. Koditschek, “A
bioinspired dynamical vertical climbing robot,” The Interna-
tional Journal of Robotics Research, vol. 31, no. 8, pp. 974–996,
2012.

[7] J. Clark, D. Goldman, P.-C. Lin, G. Lynch, T. Chen, H. Kom-
suoglu, R. J. Full, and D. E. Koditschek, “Design of a bio-
inspired dynamical vertical climbing robot.,” in Robotics: Science
and Systems, vol. 1, 2007.

[8] T. Bretl, “Motion planning of multi-limbed robots subject to
equilibrium constraints: The free-climbing robot problem,” The
International Journal of Robotics Research, vol. 25, no. 4, pp. 317–
342, 2006.

[9] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-
based locomotion planning, estimation, and control design for
the atlas humanoid robot,” Autonomous Robots, vol. 40, no. 3,
pp. 429–455, 2016.

[10] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli,
“Gait and trajectory optimization for legged systems through
phase-based end-effector parameterization,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1560–1567, 2018.

[11] M. S. Ahn, H. Chae, and D. W. Hong, “Stable, autonomous, un-
known terrain locomotion for quadrupeds based on visual feed-
back and mixed-integer convex optimization,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 3791–3798, IEEE, 2018.

[12] B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi,
A. Radulescu, D. G. Caldwell, J. Cappelletto, J. C. Grieco,
G. Fernández-López, and C. Semini, “Simultaneous contact,
gait, and motion planning for robust multilegged locomotion
via mixed-integer convex optimization,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 2531–2538, 2018.

[13] K. Autumn, S. Hsieh, D. Dudek, J. Chen, C. Chitaphan, and
R. Full, “Dynamics of geckos running vertically,” Journal of
experimental biology, vol. 209, no. 2, pp. 260–272, 2006.

[14] X. Lin, “Multi-limbed robot vertical two wall climbing based on
static indeterminacy and feasibility region analysis,” in Robotics
and Automation (IROS), 2018 IEEE International Conference on,
pp. 5467–5473, IEEE, 2018.

[15] V. Kumar and K. Waldron, “Force distribution in walking
vehicles,” Journal of Mechanical Design, vol. 112, no. 1, pp. 90–
99, 1990.

[16] D. W. Hong and R. J. Cipra, “Visualization of the contact force
solution space for multi-limbed robots,” Journal of Mechanical
Design, vol. 128, no. 1, pp. 295–302, 2006.

	Introduction
	Problem Formulation
	Robotic Platform
	Robot Model
	Safety Factor for Climbing
	Complete Formulation of the Planning Problem

	Motion Planning Algorithm
	Optimization for Climbing Posture
	Optimization for Pushing Force

	Results
	Climbing over steps on the walls
	Climbing on the walls while avoiding obstacles
	Climbing on non-parallel walls

	Conclusion and Future Work
	References

